Pushing the science forward: chitosan nanoparticles and functional repair of CNS tissue after spinal cord injury

نویسندگان

  • Bojun Chen
  • Debra Bohnert
  • Richard Ben Borgens
  • Youngnam Cho
چکیده

BACKGROUND We continue our exploration of the large polysaccharide polymer Chitosan as an acute therapy for severe damage to the nervous system. We tested the action of subcutaneously injected nanoparticles (~ 100 - 200 nanometers in diameter; 1 mg per ml) against control injections (silica particle of the same size and concentration) in a standardized in vivo spinal cord injury model. These functional tests used standardized physiological measurements of evoked potentials arriving at the sensorimotor cortex subsequent to stimulation of the tibial nerve of the contralateral hindlimb. We further explored the degree of acetylation and molecular weight of chitosan on the success of sealing cell damage using specific probes of membrane integrity. RESULTS Not one of the control group showed restored conduction of evoked potentials stimulated from the tibial nerve of the hindleg - through the lesion - and recorded at the sensorimotor cortex of the brain. Investigation if the degree of acetylation and molecular weight impacted "membrane sealing" properties of Chitosan were unsuccessful. Dye - exchange membrane probes failed to show a difference between the comparators in the function of Chitosan in ex vivo injured spinal cord tests. CONCLUSIONS We found that Chitosan nanoparticles effectively restore nerve impulse transmission through the crushed adult guinea pig spinal cord in vivo after severe crush/compression injury. The tests of the molecular weight (MW) and degree of acetylation did not produce any improvement in Chitosan's membrane sealing properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold

In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astroc...

متن کامل

The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold

In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astroc...

متن کامل

Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell

Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013